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The Yellowstone landscape

• Stand-replacing
fires

• 100-300 year 
fire interval

• Large, “natural”
landscape

• Mosaic of stand
age and density



Questions:

• How sensitive is 
landscape carbon 
storage to changes in 
disturbance regimes
(long term)?

• How sensitive is landscape carbon storage to 
large disturbances (short term)?

• What key processes regulate carbon storage on
landscapes?



What affects landscape carbon storage?

• Balance between carbon accumulating in 
vegetation/forest floor and carbon lost through 
decomposition of dead wood.
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What affects landscape carbon storage?

• Balance between carbon accumulating in 
vegetation/forest floor and carbon lost through 
decomposition of dead wood.

• Changes in the stand density distribution across 
the landscape following fires.

• Changes in the stand
age distribution across 
the landscape following
fires.
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Variability in structure affects landscape NEP

>50,000 stems/ha

1,000 stems/ha

0 stems/ha
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Do stand structures “replace themselves”?
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Stand age distributions affect landscape NEP

50 years

300 years150 years

10 years



Modeling future landscape 
C storage for Yellowstone after 1988
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Modeling future landscape 
C storage for Yellowstone after 1988
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Modeling stand age and density 
effects on landscape C storage

Climate change
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Modeling stand age and density 
effects on landscape C storage

Climate change
model predicts 
fire frequency

(EMBYR)

Modeled
components
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stands
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Conclusions:
• The post-1988 Yellowstone landscape will recover 
all carbon lost within the fire cycle (~230 years), but 
it is currently a large source of C to the atmosphere.
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Conclusions:

• Equilibrium C storage is resistant to changes in 
disturbance regimes at landscape scales.

• Large changes in the distribution of stand densities 
on the landscape are necessary to shift its ability to 
store carbon.

• The post-1988 Yellowstone landscape will recover 
all carbon lost within the fire cycle (~230 years), but 
it is currently a large source of C to the atmosphere.







Modeling C storage for Yellowstone

Area: 525,000 ha of 
lodgepole pine forests

Prefire NEP:
~ 4.82 g C/m2/yr

C lost during 1988 fires:
1360 g C/m2 (275 cars)

Post-fire C loss though
decomposition:
1530 g C/m2 55 0 1510

Kilometers


